ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804

Owner of the Declaration

Publisher

Programme Holder

Declaration Number

Issue Date

Valid To

Fachverband Schloss- und Beschlagindustrie e.V

Institut Bauen und Umwelt (IBU)

Institut Bauen und Umwelt (IBU)

EPD-FVS-20130197-IBG1-EN

23/09/2013

22/09/2018

Fanlight Openers and Pivoting Window Hardware Fachverband Schloss- und Beschlagindustrie e.V.

www.bau-umwelt.com

1 General Information

Fachverband Schloss- und Beschlag-**Fanlight Openers and Pivoting** industrie e.V. Window Hardware **Programme Holder** Owner of the Declaration IBU - Institut Bauen und Umwelt e.V. Fachverband Schloss- und Beschlagindustrie e.V. Panoramastrasse 1 Offerstrasse 12 D-10178 Berlin 42551 Velbert **Declaration Number Declared Product/Declared Unit** EPD-FVS-20130197-IBG1-EN A representative window fitting for pivoting windows and fanlights with a total weight of 1.77 kg. This declaration is based on the product category Scope of Validity: regulations: This sample environmental declaration relates to a rep-PCR Locks and Builders Hardware, 07-2012 resentative window fitting for pivoting windows and (PCR-tested and approved by the independent testing comfanlights. The values determined to calculate the LCA originate from a member company selected by the Fachverband Schloss- und Beschlagindustrie e.V. The average **Issue Date** product is representative for the product group accord-23/09/2013 ing to the Fachverband Schloss- und Beschlagindustrie e.V. The production and installation location is Germa-Valid to ny. 22/09/2018 The owner of the declaration is liable for the fundamental information and verification; any liability by the IDU in relation to manufacturers' information, LCA data and verification is excluded. Verification CEN standard EN 15804 serves as the core PCR Mennayes Independent verification of the declaration and data according to ISO 14025 internal lx| external Prof. Dr. Bi Prof. Dr.-Ing. Hans-Wolf Reinhardt (Chairman of SVA) SVA)

2 Product

2.1 Product Description

This hardware mainly consists of various metal alloys in differing proportions. Product weights between 1.77 kg and 6.48 kg are normal. The hardware opens and closes pivoting windows and fanlights. Due to the different shapes of the window profiles (frames) a technical differentiation is made between hardware for wooden and plastic windows. According to the manufacturer, a product sample has been calculated that is representative in relation to the quantity of fanlight openers and pivoting window hardware sold.

2.2

2.3 Application

The window casement is moved from a closed to an open or tilted position by using the handle. Several locking points are operated by a system built into the window casement. The fitting is responsible for the manual movement of the pivotable or tippable window casement and together with the other components of the window ensures that building physics-related and possibly other properties such

as burglar resistance are achieved safely. The hardware is normally installed in the window frame by the window manufacturer.

2.4 Technical Data

Not relevant.

2.5 Placing on the market/Application rules DIN EN 13126-9

2.6 Delivery status

The hardware being examined here is supplied in standard sizes and adapted to the necessary window format by the window manufacturer. Product weights between 1.77 kg and 6.48 kg are normal. The hardware opens and closes pivoting windows and fanlights.

Fitting weights for larger or smaller window sizes can be extrapolated via the lengths of the frames.

The hardware is supplied ready to fit and factory fitted by the processing company. The end customer receives the completely assembled window for installation in a building.

2.7 Base materials/Ancillary materials

The declared fitting consists of various galvanised steels (approx. 60%), aluminium (approx. 30%), zinc (approx. 10%) and small amounts of plastics (approx. 4%) and stainless steel (approx. 0.23%).

Plant oil-based cooling agents may be used during cutting to size, punching and boring. These have no effect on the material composition of the end product.

2.8 Manufacture

The hardware is manufactured at the factory in three steps:

Prefabrication (cutting to size and punching)

Prefitting of assemblies

Final assembly

Exposed metal surfaces are generally anodised, varnished, powder-coated or galvanised.

Only galvanising was examined as a surface treatment for the LCA.

This is partly carried out by supply partners. All requirements of quality, environmental and work safety management systems were complied with in the process.

2.9 Environment and health during manufacturing

No environmental interactions which must be especially taken into account occur during the manufacture of the hardware.

Air:

The compressed air (pneumatic cylinder) required for processing is produced in enclosed plants and cleaned with filter systems.

Water/Ground:

Water and ground are not contaminated as no waste water is produced during the manufacturing process.

Sound emissions:

Regular sound emission tests at the production locations show that only the cutting and punching areas, which are labelled as a noise zone, are relevant as regards work protection laws. Employees always wear ear protection and are subject to monitoring by the company doctor.

2.10 Product processing/Installation

The hardware is normally sent directly from the manufacturer to the window manufacturer. Processing recommendations are provided. During final fitting of the window care must be taken that the fitting is fitted properly. In particular the maximum window/casement weights approved by the manufacturer must be complied with. On its home page, the Fachverband Schloss- und Beschlagindustrie e.V. recommends the VHBH and VHBE brochures which describe the manufacturer's and the end user's obligations.

2.11 Packaging

The fitting sets are normally packaged in disposal packaging made of recyclable cardboard. There is

no elaborate sales packaging because deliveries are made directly to the processor (window manufacturer). The packaging mainly serves as protection during transport.

2.12 Condition of use

The materials result from the raw materials described in Chapter 2.1 The automatic seals are maintenance-free and are not subject to wear under normal use.

2.13 Environment and health during manufacturing

Material-specific reactions or reciprocal reactions with the environment/the user's health are not expected.

2.14 Reference service life

The products are designed for permanent use, tested accordingly and classified according to DIN EN 13126-1.

2.15 Extraordinary effects

Fire

Metal hardware is classified as not combustible. As regards its reaction to fire, it is allocated to Class A1 in accordance with DIN EN 13501-1.

Water

No negative effects for the environment and drinking water protection are to be expected from the effects of flooding. A new function test must be performed once the floods have subsided. Corrosion can lead to consequential damage.

Mechanical destruction

The mechanical destruction of window hardware is not expected in case of ordinary use. In practice, the hardware is only damaged if the entire window is destroyed and renewed.

2.16 Re-use phase

The materials used are high-quality raw materials which can be recycled at the end of the use phase. No environmental contamination occurs when the seals are dismantled. On the other hand, continued use of the fitting does not normally make economic sense.

2.17 Disposal

The seal is to be disposed of separately if a window is removed. The simple dismantling option means the hardware in the post-use phase can be completely given over to recycling. Disposal is superfluous because it would be possible without special conditions or influencing of the environment stating the waste code 17.04.07 according to the European Waste Catalogue.

2.18 Further information

Hardware is manufactured in various designs depending on the type of window. Generally, the same hardware is suitable for both wooden and plastic profiles. Especially matched materials are normally also used for hardware on aluminium profiles.

3 LCA: Calculation rules [supplemented by PE INTERNATIONAL AG]

3.1 Declared unit

The declaration relates to one fanlight opener/fitting for pivoting windows manufactured by a member company of the Fachverband Schloss- und Beschlagindustrie e.V. This average product is representative for the product group. The total weight of the declared average fanlight opener is 1.77 kg.

Specification of the declared unit

Designation	Value	Unit
Conversion factor to 1 kg	0.56	-
Declared unit	1	Piece/Product

3.2 System boundary

EPD type: Cradle to gate - with options.

The calculated LCA addresses the life cycle stage of product manufacture as well as a recycling scenario. Product manufacture includes modules A1 (raw materials provision), A2 (transport) and A3 (manufacture). The recycling scenario includes modules C2 8transport for disposal/recycling), C3 (waste recycling) and C4 (disposal). Credits from reuse, recovery and recycling potential are shown in module D in accordance with DIN EN 15804.

3.3 Estimates and assumptions

The declared fitting was calculated on the basis of production data from a member company of the Fachverband Schloss- und Beschlagindustrie e.V. To calculate the values, a manufacturer was selectthe Fachverband bv Schloss-Beschlagindustrie e.V. as being representative for further Fachverband Schloss- und Beschlagindustrie e.V. companies. The hardware on which the calculation in this declaration is based was also deliberately chosen so that it best represents each product group. The manufacturing processes and raw materials are comparable due to the normative specifications and requirements.

The actual transport distances were used for the transport of the raw materials to the factory. A transport distance of 200 km was estimated for recycling.

3.4 Cut-off criteria

All production data collected was taken into account in the balance. Processes which contribute less than 1% by weight to the final result and in all impact categories have been ignored.

It can be assumed that the ignored processes would have contributed less than 5% respectively to the impact categories included.

Machines, plant and infrastructure needed for manufacture have been ignored. Transport for packaging has been ignored.

3.5 Background data

The **GaBi 6** software system for integrated balancing developed by PE INTERNATIONAL was used to model the life cycle for the manufacture of hardware.

The consistent data records in the GaBi 6 database are documented in the GaBi 6 online documentation. The basic data in the GaBi database was used for energy, transport and auxiliary materials. The LCA was produced for the reference area of Germany. This means that in addition to the production processes within these framework conditions, the preliminary stages relevant for Germany such as electricity or energy source provision were used. The electricity mix for Germany in relation to the year 2009 was used.

3.6 Data quality

All background data relevant for the LCA was taken from the GaBi 6 database. The last revision of the background data used for balancing was less than four years ago.

The corresponding member company made current primary data from production in 2010 available. This production data was checked for plausibility. According to the manufacturer's data, the representativeness of the declared product is excellent.

The database contained corresponding data records for all upstream products. The data quality can be regarded as being excellent.

3.7 Period under review

The data basis for this LCA is current data from a member company of the Fachverband Schloss- und Beschlagindustrie e.V. from 2010.

3.8 Allocation

No allocations were made as the fanlight openers are manufactured on independent production lines. All factory data relates exclusively to the declared products.

3.9 Comparability

Comparison or evaluation of EPD data is really only possible if all data records to be compared were produced in accordance with DIN EN 15804 and the building context and the product-specific technical features are taken into account.

4 LCA: Scenarios and additional technical information

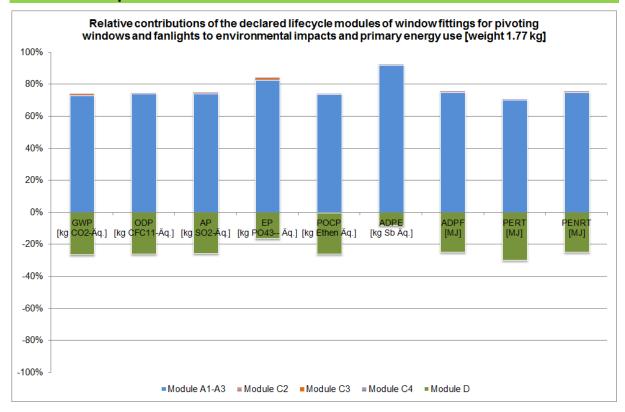
The following technical information forms the basis of the declared modules or can be used for the development of specific scenarios in the context of a building assessment if modules are not declared (MND)

Transport to recycling (C2)

Transport distance	200 km
Capacity utilisation (including empty runs)	85%

Ended of life (C1-C4)

Collected separately	100 %
Collected as mixed construction waste	0%
Re-use	0 %
Recycling	86 %
Energy recovery	4 %
Landfilling	10 %



LCA: Results

Product Stage Process Stage Use Stage End of Life Stage the System			Const	ruction												Benefits an Loads Beyo
A1	Product Stage Construction Process Stage			Use Stage											the System boundary	
X	Raw material supply	Manufacture	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction / Demoli- tion	Transport	Waste processing	Disposal	Re-use, recovery or re- cycling potential
RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: Fanlight Openors: (1.77 kg/product)	A1 A	2 A3	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	С3	C4	
Manufacture	X 2	K X	MND											Х	MND	X
Manufacture				RE									CT:			
Parameter Unit		l		Т			пк Ор	eners	. [1. <i>/ /</i>						$\overline{}$	Credit
DDP	Parameter		Unit					C2						C4		
DDP	GWP	[kg (CO ₂ -Eq.		1.6	E+01		1.8E-	-02		1.2E-01		1.0	DE-02		-5.8E+00
EP [kg PO ₄ ³ -Eq.] 6.3E-03 1.9E-05 5.6E-05 2.3E-06 -1.2E-03 POCP [kg Ethen Eq.] 5.8E-03 -2.7E-05 1.3E-05 3.9E-06 -2.0E-03 ADPE [kg Sb Eq.] 2.1E-03 8.1E-10 1.3E-09 8.9E-10 -1.9E-04 ADPE [MJ] 1.7E+02 2.4E-01 7.9E-02 3.3E-02 -5.6E-01 ADPE [MJ] 1.7E+02 2.4E-01 7.9E-02 3.3E-02 -5.6E-01 ADPE [MJ] 1.7E+02 2.4E-01 7.9E-02 3.3E-02 -5.6E-01 GWP = Global Warming Potential: ODP = Depletion potential of the stratospheric ozone layer, AP = Acidification potential of lan and water; EP = Eutrophication potential; POCP Formation potential for tropospheric ozone photochemical oxidaris, ADPE = Abt deepletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide depletion potential for non-incompanies in esources; APPF = Abbtide in	ODP			_			\dashv	3.7E-	-13	1					\neg	-4.3E-07
POCP [kg Ethen Eq.] 5.8E-03 -2.7E-05 1.3E-05 3.9E-06 -2.0E-03 ADPE [kg Sb Eq.] 2.1E-03 8.1E-10 1.3E-09 8.9E-10 -1.9E-04 ADPF [MJ] 1.7E+02 2.4E-01 7.9E-02 3.3E-02 -5.8E+01 ADPF [MJ] 1.7E+02 2.4E-01 7.9E-02 3.3E-02 -5.8E+01 ADPF [MJ] 1.7E+02 2.4E-01 7.9E-02 3.3E-02 -5.8E+01 ADPF Polytecology -2.4E-01 7.9E-02 3.3E-02 -5.8E+01 ADPF Polytecology -2.4E-01 7.9E-02 3.3E-02 -5.8E+01 ADPF Additional potential for the tratospheric ozone photochemical oxidants; ADPE = Abdit depletion potential for fossil resources. PDPF = Abdit depletion potential for fossil resources sources APPF = Additional for fossil resources APPF = Abdit depletion potential for fossil re	AP	[kg s	SO ₂ -Eq.]		7.6	E-02		7.8E-	-05					5E-05		-2.6E-02
ADPE	EP	[kg P	O ₄ ³⁻ - Eq	.]	6.3	E-03		1.9E-	05		5.6E-05		2.3	3E-06		-1.2E-03
ADPF	POCP	[kg E	then Eq	.]	5.8	E-03		-2.7E	-05		1.3E-05		3.9	9E-06		-2.0E-03
GWP = Global Warming Potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of Ian and water; EP = Eutrophication potential; POCP Formation potential for tropospheric ozone photochemical oxidants; ADPE = Abditic depletion potential for thosal resources; ADPE = Abditic depletion potential for forsal resources; ADPE = ABditic depletion potential for from potential	ADPE	[kg	Sb Eq.]		2.1	E-03		8.1E-	10		1.3E-09		8.8	9E-10		-1.9E-04
May Angle Company Angle Angl	ADPF												3.3E-02			
Manufacture	Key	and water	; EP = E	Eutrophicential for	cation po non-fos	tential; sil resou S OF	POCP F irces; Al THE L	ormation DPF = A	n potent biotic de NVIR	al for tropletion	posphe potential	ric ozono for foss	e photod il resour	hemical	l oxida	nts; ADPE = Ab
Parameter Unit		1					ht Op	eners	: [1.77							0 "
PERE [MJ]	Davamatav		l lmi4					62					21			
PERM [MJ] 0.0E+00 - - - - - - - -																
PERT [MJ]									-02				2.0	- -		-1.0L+01
PENRE Muj 2.1E+02 2.4E-01 8.4E-03 3.5E-02 -7.1E+01		1		+					.02	 		- 	26	F-03		-1 8F+01
PENRM Multiple Penrameter Manufacture Manufacture Disposal Credit																
PENRT [MJ] 2.2E+02 2.4E-01 8.4E-02 3.5E-02 -7.1E+01		1									-		-			-
RSF [MJ] -5.4E-03 1.8E-06 1.1E-06 6.1E-05 6.2E-04 NRSF [MJ] -5.7E-02 1.9E-05 1.2E-05 1.4E-04 6.4E-03 FW [m³] * * * * * * * * * * * * * * * * * *	PENRT		[MJ]	1	2.2	E+02		2.4E-	-01	1	8.4E-02	3.5E-0		3.5E-02		-7.1E+01
NRSF [MJ] -5.7E-02 1.9E-05 1.2E-05 1.4E-04 6.4E-03	01:		[kg]		0.0	E+00		-		-			-			-
FW [m³]	SM			-5.4	E-03		1.8E-	-06		1.1E-06		6.1E-05			6.2E-04	
PERE			[MJ]							+	1.2E-05		1.4E-04			6.4E-03
PERT = Total use of renewable primary energy resources; PENRE = Non-renewable primary energy as energy source; PENRM Non-renewable primary energy as material utilisation; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of refresh water RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: Fanlight Openers: [1.77 kg/product]	RSF				-5.7	'E-02		1.9E-	05		1.2E-05			_		*
Manufacture Disposal Credit Parameter Unit A1-A3 C2 C3 C4 D HWD [kg] * * * * * * NHWD [kg] * <t< td=""><td>RSF NRSF</td><td></td><td>[MJ] [m³]</td><td></td><td></td><td>*</td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td></td><td>*</td><td></td><td></td></t<>	RSF NRSF		[MJ] [m³]			*		*			*			*		
Parameter Unit A1-A3 C2 C3 C4 D HWD [kg] * * * * * * NHWD [kg] * * * * * * * RWD [kg] 1.8E-02 3.5E-07 2.0E-06 6.2E-07 -5.5E-03 CRU [kg] - - - 0.0E+00 MFR [kg] - - - 4.3E-01 MER [kg] - - - 1.6E-01 EE [elec.] [MJ] - - - 1.9E-01	RSF NRSF FW	PERE = F PERT = T Non-rener of second	[MJ] [m³] Renewak total use wable prilary mate	of rene rimary e erial; RS	ary energy as SF = Use	y as en imary en materia of rene	nergy real utilisate wable se	* urce; PE sources ion; PEN econdary	RM = Ro ; PENRE NRT = To y fuels; N	= Non- otal use NRSF =	* le primai -renewal of non-r Use of r	ry energible prima enewable on-rene	ary energie primate se wable se	gy as er ry energ	nergy s gy reso	ource; PENRM urces; SM = Us
HWD [kg] * <td>RSF NRSF FW</td> <td>PERE = F PERT = T Non-rener of second</td> <td>[MJ] [m³] Renewak total use wable prilary mate</td> <td>of rene rimary e erial; RS</td> <td>ary energ wable pr nergy as SF = Use</td> <td>y as en imary en materia of rener S OF</td> <td>nergy real utilisate wable se</td> <td>* urce; PE sources ion; PEN econdary</td> <td>RM = Ro ; PENRE NRT = To y fuels; N</td> <td>= Non- otal use NRSF = ONME kg/pr</td> <td>* le primai -renewal of non-r Use of r</td> <td>y energible prima enewablion-rene</td> <td>ary energie primate se wable se</td> <td>gy as er ry energ</td> <td>nergy s gy reso</td> <td>ource; PENRM urces; SM = Us v; FW = Use of r</td>	RSF NRSF FW	PERE = F PERT = T Non-rener of second	[MJ] [m³] Renewak total use wable prilary mate	of rene rimary e erial; RS	ary energ wable pr nergy as SF = Use	y as en imary en materia of rener S OF	nergy real utilisate wable se	* urce; PE sources ion; PEN econdary	RM = Ro ; PENRE NRT = To y fuels; N	= Non- otal use NRSF = ONME kg/pr	* le primai -renewal of non-r Use of r	y energible prima enewablion-rene	ary energie primate se wable se	gy as er ry energ	nergy s gy reso	ource; PENRM urces; SM = Us v; FW = Use of r
NHWD [kg] * </td <td>RSF NRSF FW Key</td> <td>PERE = F PERT = T Non-rene of second fresh water</td> <td>[MJ] [m³] Renewat otal use wable pr lary mate</td> <td>of rene rimary e erial; RS</td> <td>ary energy wable prinergy as SF = Use</td> <td>y as en imary en materia of rener S OF Fanlig</td> <td>nergy real utilisate wable se</td> <td>* urce; PE sources ion; PEN econdary CA - E</td> <td>RM = Ri ; PENRE NRT = Ti y fuels; N ENVIRO : [1.77</td> <td>= Non- otal use NRSF = ONME kg/pr</td> <td>* le primai renewal of non-r Use of r NTAL oduct Disposa</td> <td>y energible prima enewablion-rene</td> <td>ary energile primal wable so</td> <td>gy as er ry energ econdar</td> <td>nergy s gy reso</td> <td>cource; PENRM urces; SM = Us ;; FW = Use of r Credit</td>	RSF NRSF FW Key	PERE = F PERT = T Non-rene of second fresh water	[MJ] [m³] Renewat otal use wable pr lary mate	of rene rimary e erial; RS	ary energy wable prinergy as SF = Use	y as en imary en materia of rener S OF Fanlig	nergy real utilisate wable se	* urce; PE sources ion; PEN econdary CA - E	RM = Ri ; PENRE NRT = Ti y fuels; N ENVIRO : [1.77	= Non- otal use NRSF = ONME kg/pr	* le primai renewal of non-r Use of r NTAL oduct Disposa	y energible prima enewablion-rene	ary energile primal wable so	gy as er ry energ econdar	nergy s gy reso	cource; PENRM urces; SM = Us ;; FW = Use of r Credit
RWD [kg] 1.8E-02 3.5E-07 2.0E-06 6.2E-07 -5.5E-03 CRU [kg] - - - 0.0E+00 MFR [kg] - - - 4.3E-01 MER [kg] - - - 1.6E-01 EE [elec.] [MJ] - - - 1.9E-01	RSF NRSF FW Key	PERE = F PERT = T Non-rene of second fresh water	[MJ] [m³] Renewak Total use wable pr lary mate	of rene rimary e erial; RS	ary energy wable prinergy as SF = Use	y as en imary en materia of rener S OF Fanlig	nergy real utilisate wable se	* urce; PE sources ion; PEN econdary CA - E eners	RM = Ri ; PENRE NRT = Ti y fuels; N ENVIRO : [1.77	= Non- otal use NRSF = ONME kg/pr	* le primal -renewal of non-r Use of r NTAL oduct Disposa C3	y energible prima enewablion-rene	ary energile primal wable so	gy as er ry energ econdar	nergy s gy reso	cource; PENRM urces; SM = Us ;; FW = Use of r Credit
CRU [kg] - - - 0.0E+00 MFR [kg] - - - 4.3E-01 MER [kg] - - - 1.6E-01 EE [elec.] [MJ] - - - 1.9E-01	RSF NRSF FW Key	PERE = F PERT = T Non-rene of second fresh water	[MJ] [m³] Renewak Total use wable pr lary mate er Unit [kg]	of rene rimary e erial; RS	ary energy wable prinergy as SF = Use	* y as en imary er materia of rener S OF Fanlic facture I-A3 *	nergy real utilisate wable se	* urce; PE sources ion; PEN econdary CA - E eners C2 *	RM = Ri ; PENRE NRT = Ti y fuels; N ENVIRO : [1.77	= Non- otal use NRSF = ONME kg/pr	* le primal- renewal of non-r Use of r NTAL oduct Disposa C3 *	y energible prima enewablion-rene	ary energile primal wable so	gy as er ry energ econdar	nergy s gy reso	cource; PENRM urces; SM = Us ;; FW = Use of r Credit D *
MFR [kg] - - - 4.3E-01 MER [kg] - - - 1.6E-01 EE [elec.] [MJ] - - - 1.9E-01	RSF NRSF FW Key HWD NHWD	PERE = F PERT = T Non-rene of second fresh water	[MJ] [m³] Renewation of the last sere the la	of rene rimary e erial; RS	ary energy wable property as SF = Use SULTS	y as enimary en materia of rener S OF Fanlig facture -A3 *	nergy real utilisate wable se	* urce; PE sources ion; PEN econdary CA - E eners C2 *	RM = Ri ; PENRE ; PENRE ; PENRE ; PENRE ; FENVIRE ; [1.77	= Non- otal use NRSF = ONME kg/pr	* le primale-renewal of non-r Use of r NTAL CODISPOSA * *	y energible primaenewabloon-rene	ary energeneral energy	gy as erry energy econdar	nergy s gy reso	cource; PENRM urces; SM = Us ;; FW = Use of r Credit D *
MER [kg] - - - 1.6E-01 EE [elec.] [MJ] - - - 1.9E-01	RSF NRSF FW Key NHWD RWD	PERE = F PERT = T Non-rene of second fresh water	[MJ] [m³] Renewat otal use wable pr lary mate er Unit [kg] [kg]	of rene rimary e erial; RS	ary energy wable property as SF = Use SULTS	y as enimary en materia of rener S OF Fanlig facture -A3 *	nergy real utilisate wable se	* urce; PE sources ion; PEN econdary CA - E eners C2 *	RM = Ri ; PENRE ; PENRE ; PENRE ; PENRE ; FENVIRE ; [1.77	= Non- otal use NRSF = ONME kg/pr	* le primale-renewal of non-r Use of r NTAL CODISPOSA * *	y energible primaenewabloon-rene	ary energeneral energy	gy as erry energy econdar	nergy s gy reso	cource; PENRM urces; SM = Us ;; FW = Use of r Credit D * -5.5E-03
EE [elec.] [MJ] 1.9E-01	RSF NRSF FW Key Parameter HWD NHWD RWD CRU	PERE = F PERT = T Non-rene of second fresh water	[MJ] [m³] Renewat rotal use wable pr lary mate er Unit [kg] [kg] [kg]	of rene rimary e erial; RS	ary energy wable property as SF = Use SULTS	y as enimary en materia of rener S OF Fanlig facture -A3 *	nergy real utilisate wable se	* urce; PE sources ion; PEN econdary CA - E eners C2 *	RM = Ri ; PENRE ; PENRE ; PENRE ; PENRE ; FENVIRE ; [1.77	= Non- otal use NRSF = ONME kg/pr	* le primale-renewal of non-r Use of r NTAL CODISPOSA * *	y energible primaenewabloon-rene	ary energeneral energy	gy as erry energy econdar	nergy s gy reso	cource; PENRM urces; SM = Us ;; FW = Use of r Credit D * * -5.5E-03 0.0E+00
	RSF NRSF FW Key Parameter HWD NHWD RWD CRU MFR	PERE = F PERT = T Non-rene of second fresh wate	[MJ] [m³] Renewat Total use wable pi lary mate er Unit [kg] [kg] [kg] [kg]	of rene rimary e erial; RS	ary energy wable property as SF = Use SULTS	y as enimary en materia of rener S OF Fanlig facture -A3 *	nergy real utilisate wable se	* urce; PE sources ion; PEN econdary CA - E eners C2 *	RM = Ri ; PENRE ; PENRE ; PENRE ; PENRE ; FENVIRE ; [1.77	= Non- otal use NRSF = ONME kg/pr	* le primale-renewal of non-r Use of r NTAL CODISPOSA * *	y energible primaenewabloon-rene	ary energeneral energy	gy as erry energy econdar	nergy s gy reso	cource; PENRM urces; SM = Us urces; SM = Us ;; FW = Use of r Credit D * -5.5E-03 0.0E+00 4.3E-01
	RSF NRSF FW Key Parameter HWD NHWD RWD CRU MFR MER	PERE = F PERT = T Non-rene of second fresh wate	[MJ] [m³] Renewat otal use wable pr lary mate er Unit [kg] [kg] [kg] [kg] [kg]	of rene rimary e erial; RS	ary energy wable property as SF = Use SULTS	y as en imary en materia of rener S OF Fanlic facture I-A3 * * *	nergy real utilisate wable se	* urce; PE sources sources ion; PEN econdary CA - E eners * 3.5E	RM = Ri ; PENRE ; PENRE ; PENRE ; PENRE ; FENVIRE ; [1.77	= Non- otal use NRSF = ONME kg/pr	* le primai -renewal of non-r Use of r NTAL coduct Disposa C3 * * 2.0E-06	y energible primaenewabloon-rene	ary energeneral energy	gy as erry energy econdar	nergy s gy reso	Credit D * -5.5E-03 0.0E+00 4.3E-01 1.6E-01

6 LCA: Interpretation

The largest contribution to **Global Warming Potential (GWP, 100 years)** comes from preliminary product provision (68%) - mainly from the manufacture of continuous aluminium casting and the silicone seals. 32% of global warming gas emissions are caused by the manufacturing process itself. These are mainly attributable to electricity requirements. A total of 36% of all GWP emissions are credited; the dominant contribution comes from recycling the aluminium (53%).

63% of the **Ozone Depletion Potential (ODP)** comes from upstream chains. The manufacture of the aluminium extrusions (84%) and the galvanised steel (8%) contribute especially to the total ODP. 37% of global warming gas emissions are caused by the manufacturing process itself. Halogenated organic emissions (R 114 dichlorotetrafluoroethane) are released by the use of nuclear power in the manufacturing processes of the preliminary products. These can in turn be attributed to the CFCs used for cooling in nuclear power stations. The credit is for 35%, 84% of which originates from recycling aluminium.

The acidification potential (AP) is dominated by 59% in the production stage by the provision of raw materials (module A1). The remaining 41% originate from the manufacture of the fanlights. The greatest effects therefore result from the manufacture of aluminium extrusions (64%). Above all sulphur dioxide (61%) and nitrogen oxide (34%) dominate the AP. A credit of 34% is offset mainly by recycling the aluminium.

The largest contribution to the **eutrophication potential (EP)** comes from product manufacture with 59% (mainly the aluminium extrusions), Preproduct provision contributes 41%. The EP is

dominated by nitrogen oxide emissions due to the energy provider implementation. A total of 19% of the total emissions are credited.

The Abiotic Depletion Potential (ADP non-fossil) is mainly caused (almost 100%) by the manufacturing stage (module A1-A3). The disposal stage (C2 and C3) has no significant influence. The credit is 9% in total.

The Abiotic Depletion Potential (ADP fossil) results mainly from the contribution of the upstream chains in module A1 (68%). The use of sheet aluminium (35%) and galvanised steel (23%) makes a particularly large contribution to the ADPF. A credit of 33% is offset mainly by recycling the aluminium.

The **ozone smog potential (POCP)** is triggered by the provision of the pre-products. Modules A1 and A3 (30%) exhibit lower contamination levels than A1 (68%). Especially the MNVOC group, sulphur dioxide and nitrogen oxide contribute to POCP. The credit here is 34%.

The **entire primary energy requirement** is divided between 86% from non-renewable energy sources and 14% from renewable sources.

65% of the entire renewable primary energy requirement (PERT) results from the pre-product manufacture upstream chains (module A1). The influence of the manufacture of the aluminium extrusions is particularly apparent at 88% and the zinc pressure casting at 7%. The production process (A3) supplies 35%. The credit (module D) totals 42%, of which the largest part is attributable to aluminium recycling.

With regard to the entire non-renewable primary energy requirement (PENRT) the pre-product

manufacture upstream chains contribute 66% (largely from aluminium manufacture). The production of the fanlight opener itself contributes 34%. A

total of 33% is credited which comes mainly from recycling the metallic pre-products.

7 Requisite evidence

No further evidence is required according to the PCR for locks and hardware.

8 References

Institut Bauen und Umwelt 2011

Published by Institut Bauen und Umwelt (IBU) Generation of Environmental Product Declarations (EPDS)

General principles

For the Institut Bauen und Umwelt e.V. (IBU)'s EPD range, 2011-09, www.bau-umwelt.de

PCR 2012, Part A

Calculation rules for the LCA and requirements of the background report, Institut Bauen und Umwelt e.V., September 2012, www.bau-umwelt.de

PCR 2012, Part B

Instructions for building-related products and services, Part B: Requirements of the EPD for PCR Door locks and hardware, Institut Bauen und Umwelt e.V., www.bau-umwelt.de, July 2012, Version 1.0

DIN EN 15804

DIN EN 15804:2012-04: Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction

AVV

European Waste Catalogue dated 10th December 2001 (Federal Legal Gazette p. 3379) last modified by Article 5 Paragraph 22 of the law dated 24th February 2012 (Federal Legal Gazette p. 212).

GaBi 6

GaBi 6 Software and database for Life Cycle Engineering, JKP (Institute for Polymer Testing and Polymer Science) University of Stuttgart and PE Europe AG, Leinfelden-Echterdingen, 2012

GaBi 6 2011B

GaBi 6 Documentation of GaBi 6 data records in the integrated balancing database. LBP, University of Stuttgart and PE International, 2011 http://documentation.gabi-software.com/, http://documentation.gabi-software.com/

ISO 14025

ISO 14025:2007-10, Environmental labels and declarations - Type III Environmental declarations - Principles and procedures (ISO 14025:2006);

DIN EN 13126-1

DIN EN 13126-1:2012-02: Requirements common to all types of hardware.

DIN EN 13126-9

DIN EN 13126-9:2013-04: Hardware for horizontal and vertical pivot windows

DIN EN 13501-1

DIN EN 13501-1:2010-01: Fire classification of construction products and building elements - Part 1: Classification using data from reaction to fire tests

VHBH Directive

VHBH, 2009-11: Hardware for windows and balcony doors - guidelines/advice on the product and on liability.

VHBE Directive

VHBE, 2009-11: Hardware for windows and balcony doors - guidelines/advice for end users.

Institut Bauen und Umwelt (IBU) Panoramastrasse 1 10178 Berlin Germany

Tel: +49 (0)30 3087748- 0 Fax: +49 (0)30 3087748-29 Email: info@bau-umwelt.com Web:www.bau-umwelt.com

Programme Holder

Institut Bauen und Umwelt (IBU) Panoramastrasse 1 10178 Berlin Germany

Tel: +49 (0)30 3087748- 0 Fax: +49 (0)30 3087748-29 Email: info@bau-umwelt.com Web: www.bau-umwelt.com

Owner of the Declaration

Fachverband Schloss- und Beschlagindustrie e.V. Offerstrasse 12 42551 Velbert Germany

Tel: +49 (0)2051 95 06 10 Fax: +49 (0)2051 95 06 20 Email: info@fvsb.de Web: www.fvsb.de

Author of the Life Cycle Assessment

PE INTERNATIONAL AG Hauptstraße 111 - 113 70771 Leinfelden-Echterdingen Germany

Tel.: +49 (0) 711 34 18 17-0 Fax: +49 (0)711 341817-25 Email: info@pe-international.com Web: www.pe-international.com